Serveur d'exploration Phytophthora

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

eCALIBRATOR: A Comparative Tool to Identify Key Genes and Pathways for Eucalyptus Defense Against Biotic Stressors.

Identifieur interne : 000007 ( Main/Exploration ); précédent : 000006; suivant : 000008

eCALIBRATOR: A Comparative Tool to Identify Key Genes and Pathways for Eucalyptus Defense Against Biotic Stressors.

Auteurs : Yves Du Toit [Afrique du Sud] ; Donovin William Coles [Afrique du Sud] ; Ritesh Mewalal [États-Unis] ; Nanette Christie [Afrique du Sud] ; Sanushka Naidoo [Afrique du Sud]

Source :

RBID : pubmed:32127794

Abstract

Many pests and pathogens threaten Eucalyptus plantations. The study of defense responses in this economically important wood and fiber crop enables the discovery of novel pathways and genes, which may be adopted to improve resistance. Various functional genomics experiments have been conducted in Eucalyptus-biotic stress interactions following the availability of the Eucalyptus grandis genome, however, comparisons between these studies were limited largely due to a lack of comparative tools. To this end, we developed eCALIBRATOR http://ecalibrator.bi.up.ac.za, a tool for the comparison of Eucalyptus biotic stress interaction. The tool, which is not limited to Eucalyptus, allows the comparison of various datasets, provides a visual output in the form of Venn diagrams and clustering and extraction of lists for gene ontology enrichment analyses. We also demonstrate the usefulness of the tool in revealing pathways and key gene targets to further functionally characterize. We identified 708 differentially expressed E. grandis genes in common among responses to the insect pest Leptocybe invasa, oomycete pathogen Phytophthora cinnamomi and fungus Chrysoporthe austroafricana. Within this set of genes, one of the Gene Ontology terms enriched was "response to organonitrogen compound," with NITRATE TRANSPORTER 2.5 (NRT2.5) being a key gene, up-regulated under susceptible interactions and down-regulated under resistant interactions. Although previous functional genetics studies in Arabidopsis thaliana support a role in nitrate acquisition and remobilization under long-term nitrate starvation, the importance of NRT2.5 in plant defense is unclear. The T-DNA mutants of AtNRT2.5 were more resistant to Pseudomonas syringae pv. tomato pv tomato DC3000 inoculation than the wild-type counterpart, supporting a direct role for NRT2.5 in plant defense. Future studies will focus on characterizing the Eucalyptus ortholog of NRT2.5.

DOI: 10.3389/fmicb.2020.00216
PubMed: 32127794
PubMed Central: PMC7039109


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">eCALIBRATOR: A Comparative Tool to Identify Key Genes and Pathways for
<i>Eucalyptus</i>
Defense Against Biotic Stressors.</title>
<author>
<name sortKey="Du Toit, Yves" sort="Du Toit, Yves" uniqKey="Du Toit Y" first="Yves" last="Du Toit">Yves Du Toit</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Coles, Donovin William" sort="Coles, Donovin William" uniqKey="Coles D" first="Donovin William" last="Coles">Donovin William Coles</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mewalal, Ritesh" sort="Mewalal, Ritesh" uniqKey="Mewalal R" first="Ritesh" last="Mewalal">Ritesh Mewalal</name>
<affiliation wicri:level="2">
<nlm:affiliation>Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Christie, Nanette" sort="Christie, Nanette" uniqKey="Christie N" first="Nanette" last="Christie">Nanette Christie</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Naidoo, Sanushka" sort="Naidoo, Sanushka" uniqKey="Naidoo S" first="Sanushka" last="Naidoo">Sanushka Naidoo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32127794</idno>
<idno type="pmid">32127794</idno>
<idno type="doi">10.3389/fmicb.2020.00216</idno>
<idno type="pmc">PMC7039109</idno>
<idno type="wicri:Area/Main/Corpus">000257</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000257</idno>
<idno type="wicri:Area/Main/Curation">000257</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000257</idno>
<idno type="wicri:Area/Main/Exploration">000257</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">eCALIBRATOR: A Comparative Tool to Identify Key Genes and Pathways for
<i>Eucalyptus</i>
Defense Against Biotic Stressors.</title>
<author>
<name sortKey="Du Toit, Yves" sort="Du Toit, Yves" uniqKey="Du Toit Y" first="Yves" last="Du Toit">Yves Du Toit</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Coles, Donovin William" sort="Coles, Donovin William" uniqKey="Coles D" first="Donovin William" last="Coles">Donovin William Coles</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Mewalal, Ritesh" sort="Mewalal, Ritesh" uniqKey="Mewalal R" first="Ritesh" last="Mewalal">Ritesh Mewalal</name>
<affiliation wicri:level="2">
<nlm:affiliation>Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA, United States.</nlm:affiliation>
<country xml:lang="fr">États-Unis</country>
<wicri:regionArea>Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA</wicri:regionArea>
<placeName>
<region type="state">Californie</region>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Christie, Nanette" sort="Christie, Nanette" uniqKey="Christie N" first="Nanette" last="Christie">Nanette Christie</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Naidoo, Sanushka" sort="Naidoo, Sanushka" uniqKey="Naidoo S" first="Sanushka" last="Naidoo">Sanushka Naidoo</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</nlm:affiliation>
<country xml:lang="fr">Afrique du Sud</country>
<wicri:regionArea>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria</wicri:regionArea>
<wicri:noRegion>Pretoria</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Frontiers in microbiology</title>
<idno type="ISSN">1664-302X</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass></textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">Many pests and pathogens threaten Eucalyptus plantations. The study of defense responses in this economically important wood and fiber crop enables the discovery of novel pathways and genes, which may be adopted to improve resistance. Various functional genomics experiments have been conducted in Eucalyptus-biotic stress interactions following the availability of the
<i>Eucalyptus grandis</i>
genome, however, comparisons between these studies were limited largely due to a lack of comparative tools. To this end, we developed eCALIBRATOR http://ecalibrator.bi.up.ac.za, a tool for the comparison of Eucalyptus biotic stress interaction. The tool, which is not limited to Eucalyptus, allows the comparison of various datasets, provides a visual output in the form of Venn diagrams and clustering and extraction of lists for gene ontology enrichment analyses. We also demonstrate the usefulness of the tool in revealing pathways and key gene targets to further functionally characterize. We identified 708 differentially expressed
<i>E. grandis</i>
genes in common among responses to the insect pest
<i>Leptocybe invasa</i>
, oomycete pathogen
<i>Phytophthora cinnamomi</i>
and fungus
<i>Chrysoporthe austroafricana</i>
. Within this set of genes, one of the Gene Ontology terms enriched was "response to organonitrogen compound," with
<i>NITRATE TRANSPORTER 2.5</i>
(
<i>NRT2.5</i>
) being a key gene, up-regulated under susceptible interactions and down-regulated under resistant interactions. Although previous functional genetics studies in
<i>Arabidopsis thaliana</i>
support a role in nitrate acquisition and remobilization under long-term nitrate starvation, the importance of
<i>NRT2.5</i>
in plant defense is unclear. The T-DNA mutants of
<i>AtNRT2.5</i>
were more resistant to
<i>Pseudomonas syringae</i>
pv.
<i>tomato pv tomato</i>
DC3000 inoculation than the wild-type counterpart, supporting a direct role for
<i>NRT2.5</i>
in plant defense. Future studies will focus on characterizing the
<i>Eucalyptus</i>
ortholog of
<i>NRT2.5</i>
.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="PubMed-not-MEDLINE" Owner="NLM">
<PMID Version="1">32127794</PMID>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>28</Day>
</DateRevised>
<Article PubModel="Electronic-eCollection">
<Journal>
<ISSN IssnType="Print">1664-302X</ISSN>
<JournalIssue CitedMedium="Print">
<Volume>11</Volume>
<PubDate>
<Year>2020</Year>
</PubDate>
</JournalIssue>
<Title>Frontiers in microbiology</Title>
<ISOAbbreviation>Front Microbiol</ISOAbbreviation>
</Journal>
<ArticleTitle>eCALIBRATOR: A Comparative Tool to Identify Key Genes and Pathways for
<i>Eucalyptus</i>
Defense Against Biotic Stressors.</ArticleTitle>
<Pagination>
<MedlinePgn>216</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.3389/fmicb.2020.00216</ELocationID>
<Abstract>
<AbstractText>Many pests and pathogens threaten Eucalyptus plantations. The study of defense responses in this economically important wood and fiber crop enables the discovery of novel pathways and genes, which may be adopted to improve resistance. Various functional genomics experiments have been conducted in Eucalyptus-biotic stress interactions following the availability of the
<i>Eucalyptus grandis</i>
genome, however, comparisons between these studies were limited largely due to a lack of comparative tools. To this end, we developed eCALIBRATOR http://ecalibrator.bi.up.ac.za, a tool for the comparison of Eucalyptus biotic stress interaction. The tool, which is not limited to Eucalyptus, allows the comparison of various datasets, provides a visual output in the form of Venn diagrams and clustering and extraction of lists for gene ontology enrichment analyses. We also demonstrate the usefulness of the tool in revealing pathways and key gene targets to further functionally characterize. We identified 708 differentially expressed
<i>E. grandis</i>
genes in common among responses to the insect pest
<i>Leptocybe invasa</i>
, oomycete pathogen
<i>Phytophthora cinnamomi</i>
and fungus
<i>Chrysoporthe austroafricana</i>
. Within this set of genes, one of the Gene Ontology terms enriched was "response to organonitrogen compound," with
<i>NITRATE TRANSPORTER 2.5</i>
(
<i>NRT2.5</i>
) being a key gene, up-regulated under susceptible interactions and down-regulated under resistant interactions. Although previous functional genetics studies in
<i>Arabidopsis thaliana</i>
support a role in nitrate acquisition and remobilization under long-term nitrate starvation, the importance of
<i>NRT2.5</i>
in plant defense is unclear. The T-DNA mutants of
<i>AtNRT2.5</i>
were more resistant to
<i>Pseudomonas syringae</i>
pv.
<i>tomato pv tomato</i>
DC3000 inoculation than the wild-type counterpart, supporting a direct role for
<i>NRT2.5</i>
in plant defense. Future studies will focus on characterizing the
<i>Eucalyptus</i>
ortholog of
<i>NRT2.5</i>
.</AbstractText>
<CopyrightInformation>Copyright © 2020 du Toit, Coles, Mewalal, Christie and Naidoo.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>du Toit</LastName>
<ForeName>Yves</ForeName>
<Initials>Y</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Coles</LastName>
<ForeName>Donovin William</ForeName>
<Initials>DW</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Mewalal</LastName>
<ForeName>Ritesh</ForeName>
<Initials>R</Initials>
<AffiliationInfo>
<Affiliation>Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA, United States.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Christie</LastName>
<ForeName>Nanette</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Naidoo</LastName>
<ForeName>Sanushka</ForeName>
<Initials>S</Initials>
<AffiliationInfo>
<Affiliation>Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, Pretoria, South Africa.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>02</Month>
<Day>17</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Switzerland</Country>
<MedlineTA>Front Microbiol</MedlineTA>
<NlmUniqueID>101548977</NlmUniqueID>
<ISSNLinking>1664-302X</ISSNLinking>
</MedlineJournalInfo>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Eucalyptus</Keyword>
<Keyword MajorTopicYN="N">comparative transcriptomics</Keyword>
<Keyword MajorTopicYN="N">defense</Keyword>
<Keyword MajorTopicYN="N">nitrate transporter</Keyword>
<Keyword MajorTopicYN="N">nitrogen</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2019</Year>
<Month>08</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>01</Month>
<Day>30</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>3</Month>
<Day>5</Day>
<Hour>6</Hour>
<Minute>1</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>epublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32127794</ArticleId>
<ArticleId IdType="doi">10.3389/fmicb.2020.00216</ArticleId>
<ArticleId IdType="pmc">PMC7039109</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>J Genet Genomics. 2013 Jan 20;40(1):23-35</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23357342</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2013 Apr;198(2):514-24</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23398541</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Biotechnol. 2010 May;28(5):511-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20436464</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Vis Exp. 2015 Oct 01;(104):</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26485301</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nat Protoc. 2012 Mar 01;7(3):562-78</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22383036</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2005 Nov 1;6(6):589-604</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20565682</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Pathol. 2006 Mar 1;7(2):125-30</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20507433</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2012 Jun;63(11):3989-98</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22553288</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2006 Apr;90(4):433-438</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30786590</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2019 Mar 29;10:273</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">31001287</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Exp Bot. 2013 Apr;64(6):1439-49</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23564957</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2000 Dec;124(4):1477-80</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11115863</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Mol Plant Microbe Interact. 2005 Sep;18(9):923-37</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16167763</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2006 Jun;90(6):734-740</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30781232</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2014 Oct;80(2):230-41</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25065551</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nucleic Acids Res. 2012 Jan;40(Database issue):D1211-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22080561</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Plant Biol. 2015 Feb 21;15:58</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25849363</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2015 Jun;206(4):1328-36</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25494981</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Trends Biochem Sci. 1998 Dec;23(12):454-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">9868361</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell. 2010 Jul;22(7):2459-75</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">20639450</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Lab Clin Med. 1954 Aug;44(2):301-7</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">13184240</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Bioinformatics. 2014 Aug 29;15:293</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25176396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant J. 2001 Nov;28(4):475-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11737784</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Genomics. 2015 Apr 18;16:319</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25903559</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Plant Biol. 2006;57:675-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16669778</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Ann Bot. 2017 Mar 1;119(5):703-709</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">27594647</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cheminform. 2014 Sep 17;6(1):44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25264459</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>New Phytol. 2014 Dec;204(4):955-67</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25041086</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Dis. 2003 Nov;87(11):1329-1332</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">30812548</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Cell Dev Biol. 2012;28:489-521</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22559264</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Cell Physiol. 2015 Jul;56(7):1418-28</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">25948810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Plant Physiol. 2012 Feb;158(2):1054-66</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22158760</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Phytopathol. 2004;42:185-209</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15283665</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Opin Immunol. 2008 Feb;20(1):10-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18206360</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Annu Rev Entomol. 2016;61:177-96</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26982439</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Front Plant Sci. 2016 Mar 02;7:191</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">26973660</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>Afrique du Sud</li>
<li>États-Unis</li>
</country>
<region>
<li>Californie</li>
</region>
</list>
<tree>
<country name="Afrique du Sud">
<noRegion>
<name sortKey="Du Toit, Yves" sort="Du Toit, Yves" uniqKey="Du Toit Y" first="Yves" last="Du Toit">Yves Du Toit</name>
</noRegion>
<name sortKey="Christie, Nanette" sort="Christie, Nanette" uniqKey="Christie N" first="Nanette" last="Christie">Nanette Christie</name>
<name sortKey="Coles, Donovin William" sort="Coles, Donovin William" uniqKey="Coles D" first="Donovin William" last="Coles">Donovin William Coles</name>
<name sortKey="Naidoo, Sanushka" sort="Naidoo, Sanushka" uniqKey="Naidoo S" first="Sanushka" last="Naidoo">Sanushka Naidoo</name>
</country>
<country name="États-Unis">
<region name="Californie">
<name sortKey="Mewalal, Ritesh" sort="Mewalal, Ritesh" uniqKey="Mewalal R" first="Ritesh" last="Mewalal">Ritesh Mewalal</name>
</region>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/PhytophthoraV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000007 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000007 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    PhytophthoraV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32127794
   |texte=   eCALIBRATOR: A Comparative Tool to Identify Key Genes and Pathways for Eucalyptus Defense Against Biotic Stressors.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32127794" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a PhytophthoraV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Fri Nov 20 11:20:57 2020. Site generation: Wed Mar 6 16:48:20 2024